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Abstract

This paper focuses on the development of constitutive
models, commensurate system models, and inverse com-
pensator construction for high speed nanopositioning in
atomic force microscopes (AFM). All current AFM em-
ploy either stacked or cylindrical piezoceramic actua-
tors for both longitudinal and transverse positioning of
the sample. An inherent property of these materials
is the presence of hysteresis and constitutive nonlineari-
ties, even at the low drive levels employed for angstrom-
level resolution. At low frequencies, standard feedback
mechanisms effectively attenuate the hysteresis, whereas
noise at high frequencies diminishes the efficacy of feed-
back and leads to unacceptable accuracy. In this paper,
we discuss modeling techniques which provide a first
step toward high speed nanopositioning for applications
ranging from macroscopic product evaluation to real-
time imaging of biological processes.

1. Introduction

Piezoceramic transducers are employed in a large
range of applications requiring angstrom-level position-
ing due to their high set point accuracy, large dy-
namic range, and relatively small temperature sensitiv-
ity. They are presently employed in all atomic force
microscope (AFM) designs for both lateral and verti-
cal positioning of samples and are being considered as
drive elements for future nanopositioning and nanocon-
struction applications. The positive attributes of piezo-
ceramic (PZT) materials are complemented, however,
by hysteresis and constitutive nonlinearities inherent to
the compounds even at low drive levels and frequencies.
During low frequency operation, conventional feedback
laws successfully mitigate these effects, thus leading to
the phenomenal success of the AFM technology. How-
ever, at the higher frequencies required for applications,
including real-time imaging of biological processes and
efficient product evaluation, two phenomena degrade
the accuracy achieved by present control techniques: (i)
the piezoceramic materials exhibit increased hysteresis,
and (ii) noise to data ratios increase to levels where feed-
back laws are augmenting noise rather than attenuating
hysteresis and nonlinear dynamics. This necessitates

the development of control designs which utilize physi-
cal models and model inverses to quantify and compen-
sate for hysteresis rather than relying solely on feedback
laws based on inherently inaccurate state estimates.

The models designed for this role must satisfy compet-
ing objectives; they must be sufficiently accurate to pre-
dict the nonlinear material dynamics under varying op-
erating conditions and they must be sufficiently efficient
to allow real-time implementation. In this paper, we dis-
cuss the development of a methodology for constructing
hysteresis models and model inverses for piezoceramics
materials based on free energy properties of the mate-
rials. This provides an inverse compensator framework
suitable for subsequent control design. The motivating
application is taken to be AFM design which permits
substantially increased scan rates. However, the mod-
els and model inverses apply to general piezoceramic
compounds and are appropriate for general applications
involving high accuracy, high speed, nanopositioning.

To illustrate issues involved with model, compensator,
and control development, consider the AFM design de-
picted in Figure 1. The sample is positioned using either
a stacked actuator utilizing d33 motion or a cylindrical
actuator employing d31 motion. As the sample is moved

Piezoceramic
Positioner
(x,y,z)

Sample

Micro-cantilever

Laser
Photodiode

z

y
x

Law
Feedback

Figure 1. Configuration of a prototypical AFM.
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laterally along a prescribed x-y grid, displacements in
response to changing forces between the cantilever tip
and sample are measured using the photodiode. A feed-
back law is then used to raise or lower the sample, again
via the piezoceramic transducer, to maintain constant
forces. Details regarding the construction and applica-
tions utilizing atomic force microscopes and scanning
tunneling microscopes (STM) can be found in [4].

The accuracy of the device is intimately related to
the accuracy of the piezoceramic positioning elements.
While piezoceramic compounds exhibit high set point
accuracy, they also exhibit hysteresis in the relation be-
tween input fields or voltages and the strains or displace-
ments generated by the device as shown in Figure 2.
As illustrated in [8], the degree of hysteresis increases
with increasing frequency which, in combination with
increased noise to data ratios, exacerbates the difficul-
ties associated with control design.

In recent papers, a variety of techniques have been
employed to construct models and inverse compensators
as a prelude to control design for high speed nanoposi-
tioning. Domain wall theory was employed in [9] while
models based on Preisach techniques were considered in
[10] for quantifying hysteresis inherent to the positioning
mechanism in an AFM. While both techniques yield ac-
curate models for quantifying and compensating for hys-
teresis, both suffer deficiencies which limit their utility
for broadband control design. The domain wall mod-
els are highly accurate for symmetric hysteresis loops
but require substantial modification for biased regimes;
hence they are difficult to implement when transient dy-
namics are significant. The Preisach models accommo-
date biased hysteresis loops but do so at the cost of a
large number of nonphysical parameters. This limits
their utility for high speed implementation. Further-
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Figure 2. Relation between the input field E and dis-
placements generated by the PZT positioning mecha-
nism in an AFM.

more, the Preisach theory requires substantial extension
to accommodate variable frequencies, temperatures and
stress effects.

The model and inverse compensator developed in this
paper are based on energy properties of the materials.
In Section 2, free energy theory, in conjunction with
stochastic homogenization techniques, is used to develop
constitutive equations for the constituent piezoceramic
materials. In Section 3, these constitutive relations are
incorporated in classical rod models to provide a dy-
namic model for the stacked actuator. The performance
of the model is illustrated in Section 4 through compari-
son with the experimental data plotted in Figure 2. The
development of an inverse compensator appropriate for
inclusion in a feedforward control loop is summarized in
Section 5.

2. Constitutive Relations

When modeling the constitutive behavior of the piezo-
ceramic stacked actuator, we assume that the stress-
strain relation is adequately modeled by linear expres-
sions whereas the map between input fields E or voltages
V and the generated polarization P is nonlinear and hys-
teretic. Moreover, we assume that the material is biased
through poling to operate in regimes where the relation
between the polarization and strains ε is approximately
linear. This latter assumption is motivated by a number
of classical references [2, 5] and experiments are being
designed to establish the validity of this assumption for
the regimes under consideration.

To model the nonlinear map between E and P , and
to provide a framework which yields appropriate consti-
tutive relations, we first establish Helmholtz and Gibbs
energy relations at the domain level. This yields a meso-
scopic model appropriate for homogeneous, single crys-
tal compounds with uniform effective fields. The effects
of material nonhomogeneities, polycrystallinity, and
variable effective fields are then incorporated through
stochastic distributions to obtain macroscopic models
suitable for system characterization and inverse com-
pensator construction for subsequent control design.
The discussion of the E-P hysteresis model follows the
development in [11, 12, 13] and details regarding its con-
struction can be found in those sources.

For fixed temperature conditions with no applied
stresses σ, the Helmholtz energy exhibits piecewise
quadratic behavior and hence an appropriate model is

ψ(P ) =




1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI .

(1)
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Figure 3. (a) Helmholtz energy ψ and Gibbs energy G for increasing field E. (b) Local polarization P as a function
of E for a homogeneous, isotropic material.

As illustrated in Figure 3, PI and PR respectively denote
the inflection point and polarization at which the pos-
itive local minimum of ψ occurs. The point PR is also
the local remanence polarization at the domain level.
Finally, the fact that η is the reciprocal of the slope in
the E-P relation after switching can be utilized to de-
termine initial parameter values when establishing the
model for a given piezoceramic compound and applica-
tion.

In the absence of applied stresses σ, it is illustrated
in [12] that an appropriate choice of the Gibbs energy is

G(E,P ) = ψ − EP (2)

where the latter term incorporates the electrostatic en-
ergy due to an applied field E. The behavior of G given
by (2) is illustrated for positive fields in Figure 3.

To incorporate ferroelastic coupling, we employ the
extended Helmholtz relation

ψe(P, ε) = ψ(P ) +
1
2
Y P ε2 − Y MγεP (3)

and corresponding Gibbs energy

G(E,P, ε) = ψ(P ) +
1
2
Y P ε2 − Y MγεP −EP − σε (4)

where ψ is specified by (1). Here Y P denotes the
Young’s modulus at constant polarization and γ is a
ferroelastic coupling coefficient. We note that the final
term in (4) incorporates the elastic energy.

In the formulation (1) for the Helmholtz energy, it is
implicitly assumed that dipoles assume two orientations
which we denote as positive and negative. The expected
polarization due to positively oriented dipoles is

〈P+〉 =
∫ ∞

P0

Pµ(G) dP

where
µ(G) = Ce−GV/kT (5)

quantifies the probability of achieving the energy level
G. Here V denotes a representative volume, k is Boltz-
mann’s constant, and C is an integration constant cho-
sen to guarantee a probability of 1 when integrated over
all feasible dipole orientations. Evaluation of C yields

〈P+〉 =

∫ ∞

P0

Pe−G(E,P,T )V/kT dP∫ ∞

P0

e−G(E,P,T )V/kT dP

〈P−〉 =

∫ P0

−∞
Pe−G(E,P )V/kT dP∫ P0

−∞
e−G(E,P )V/kT dP

.

(6)

The fraction of dipoles having positive and negative
orientations are respectively quantified by the evolution
equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+ .
(7)

The likelihoods of switching from positive to negative,
and conversely, are specified by

p+− =

√
kT

2πmV 2/3

e−G(E,P0,T )V/kT∫ ∞

P0

e−G(E,P,T )V/kT dP

p−+ =

√
kT

2πmV 2/3

e−G(E,P0,T )V/kT∫ P0

−∞
e−G(E,P,T )V/kT dP

(8)
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where m is the mass of the lattice volume V . For homo-
geneous materials with constant effective field Ee = E,
the local average polarization is then given by

P = x+ 〈P+〉 + x− 〈P−〉 . (9)

For regimes in which operating time scales make ther-
mal activation negligible, asymptotic relations can be
employed to simplify the polarization kernel (9) since
jumps can be assumed to occur instantaneously (see
[12, 13]) for details). In this regime, P = Pmin where
Pmin is the solution to

∂G

∂P
= 0.

This yields the piecewise linear definition

[P (E, ε;Ec, ξ)](t) =




[P (E, ε;Ec, ξ)](0)
E

η−2Y P γε
− PRη

η−2Y P γε

E
η−2Y P γε

+ PRη
η−2Y P γε

(10)

for the respective cases {τ(t) = ∅}, {τ(t) 6= ∅ and
E(max τ(t)) = −Ec}, {τ(t) 6= ∅ and E(max τ(t)) =
Ec}. The local coercive field is given by

Ec = η(PR − PI). (11)

The transition points τ are specified by

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec} ,

and

[P (E, ε;Ec, ξ)](0) =




E
η−2Y P γε

− PRη
η−2Y P γε

ξ
E

η−2Y P γε
+ PRη

η−2Y P γε

denotes the initial dipole orientation for respective ini-
tial fields {E(0) ≤ −Ec}, {−Ec < E(0) < Ec} or
{E(0) ≥ Ec}.

The relations (9) or (10) quantify the hysteretic rela-
tion between E and P for homogeneous, single crystal
compounds having uniform effective field Ee = E. To
extend this mesoscopic model to macroscopic regimes
involving nonhomogeneous, polycrystalline compounds
with variable effective fields, we consider certain pa-
rameters to be manifestations of underlying distribu-
tions rather than constant values. To incorporate vari-
ations in the lattice structure, we assume that the local
coercive field Ec specified by (11) is log-normally dis-
tributed; that is, we assume that it has the density

f(Ec) = c1e
− ln(Ec/Ēc)/2b]2 (12)

where, if b is small compared with Ēc, Ēc denotes a
mean coercive field at which dipoles switch. Effective
field effects (see [1, 6]) are incorporated by assuming
that the actual field at the domain level has the density

f̂(E) = c2e
−(E−E)2/b̄ . (13)

The macroscopic polarization model is then

P (E) = C

∫ ∞

0

∫ ∞

−∞
P (E, ε;Ec, ξ)f(Ec)f̂(E) dEdEc

(14)
with P given by (9) or (10). It is detailed in [11] that
the formulation (14) provides an energy basis for certain
Preisach representations with the difference that tem-
perature and frequency dependencies are incorporated
in the kernel of (14) rather than the parameters as is
the case for Preisach models.

The elastic constitutive relation is determined from
the equilibrium condition

∂G

∂ε
= 0

which yields
σ = Y Mε − Y MγP. (15)

In combination, the nonlinear polarization relation (14)
and linear elastic relation (15) quantify the constitu-
tive behavior of the piezoceramic materials for operating
regimes pertinent to nanopositioning.

3. Stacked Actuator Model

It was noted in previous discussion that nanoposition-
ers are typically comprised of stacked actuators utiliz-
ing d33 motion or cylindrical shells employing d31 mo-
tion. We outline here the construction of a model for
the stacked actuator and refer the reader to [9] for the-
ory illustrating the development of an analogous model
for cylindrical transducers.

As will be detailed in Section 4, the cross-sectional
area of stacked actuators is small compared with the
length which permits consideration of rod models that
quantify longitudinal displacements. One end of the
transducer is fixed while the other is either free or con-
strained by an elastic load. For this development, we
consider a free end condition but note that the model
can be easily modified to accommodate a mass or elas-
tic loading at the free end (e.g., see [3]). The rod is as-
sumed to have cross-sectional area A and length `, and
displacements in the longitudinal (x-axis) are denoted
by u. The density, Young’s modulus and Kelvin-Voigt
damping parameters are respectively denoted by ρ, Y P

and cD.
Force balancing and enforcement of boundary condi-

tions yields the strong form of the model

ρA
∂2u

∂t2
=

∂N
∂x

u(t, 0) = N (t, `) = 0

(16)

where N =
∫

A
σdA denotes the force resultant. To

quantify σ in a manner which incorporates Kelvin-Voigt
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damping, we employ an extension of (15) in which it is
assumed that stresses are proportional to a linear com-
bination of strain, strain rate and polarization. With
the linear strain relation e = ∂u

∂x , this yields

N = Y P A
∂u

∂x
+ cDA

∂2u

∂x∂t
− Y P AγP (E)

where the polarization is specified by (14).
To define a weak or variational form of the model

which is appropriate for well-posedness analysis, approx-
imation, or control design, the state u is considered in
the state space X = L2(0, `) with the inner product

〈φ, ψ〉X =
∫ `

0

ρAφψ dx.

The space of test functions is taken to be V = H1
` (0, `) =

{ψ ∈ H1(0, `) |ψ(0) = 0} with the inner product

〈φ, ψ〉V =
∫ `

0

Y P Aφ′ψ′ dx.

Multiplication by test functions followed by integration
then yields the weak form∫ `

0

ρA
∂2u

∂t2
ψ dx +

∫ `

0

Y PA
∂u

∂x

∂ψ

∂x
dx

+
∫ `

0

cDA
∂2u

∂x∂t

∂ψ

∂x
dx =

∫ `

0

Y P AγP (E)
∂ψ

∂x
dx

(17)

which must be satisfied for all ψ ∈ V . Details regarding
the approximation of (17) using finite elements to obtain
a finite-dimensional system can be found in [3, 9].

4. Model Validation

To illustrate attributes of the model, we consider the
characterization of the stacked actuator used to generate
the data plotted in Figure 2. The actuator has a width of
5 mm and length of 20 mm, and is configured for d33, or
longitudinal, motion. The Young’s modulus and density
specified by the manufacturer are Y P = 6.5×1010 N/m2

and ρ = 7730 kg/m3. The Kelvin-Voigt damping pa-
rameter cD = 6.5× 107 Ns/m2 and polarization param-
eters b = 100, b̄ = 1.178×107, C = 1×104, η = 1.14×106

and Ēc = 6.374 × 10−9 were estimated through a least
squares fit to the data.

Displacement data collected at 0.1 Hz with a 30 V
oscillation about a bias level of 70 V is plotted in Fig-
ure 4 along with the model prediction. It is observed
that the model accurately quantifies both the hysteresis
and constitutive nonlinearities inherent to the material.
Moreover, by employing the algorithms detailed in [13],
implementation of the model is sufficiently efficient to
permit the development of model-based compensators
capable of being implemented in real time.
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Figure 4. Experimental data collected from the stacked
actuator and model prediction.

5. Model Inverse

The monotone relation between E and P can be uti-
lized to construct inverse models which specify the field
necessary to achieve a given polarization level. These in-
verse maps can then be employed in feedforward loops
to compensate for hysteresis and constitutive nonlinear-
ities in a manner which facilitates linear control design.

The construction of a model quantifying the inverse
map between P and E is outlined in Algorithm 1. For
given values of Pprev and Pnew, the relation (14) is used
to increment the field until the predicted polarization
Ptmp has advanced beyond Pnew, and the final field
value Enew is determined through linear interpolation
between the final two predicted field values. When im-
plementing the algorithm, the stepsize ∆E is adaptively
updated to ensure that the efficiency of the inverse al-
gorithm is close to that of the forward algorithm.

The inverse model provided by Algorithm 1 is com-
pared with experimental PZT5A data, reported in [12],
in Figure 5. The model parameters are the same as
those specified for the forward model in [12]. Figure 5
illustrates the accuracy of Algorithm 1 for quantifying
the P -E behavior of piezoceramic materials.

Algorithm 1.
Specify Eprev, Pprev, Pnew

Specify ∆E

dP = Pnew − Pprev

Etmp = Eprev , Ptmp = Pprev

while sgn(dP )(Pnew − Ptmp) ≥ 0
Etmp = Etmp + ∆E

Ptmp given by (14)
end
Enew given by linear interpolation
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Figure 5. Experimental PZT5A data from [12] and
inverse model predicted by Algorithm 1.

6. Concluding Remarks

The model presented here quantifies the hysteresis
and constitutive nonlinearities inherent to the piezoce-
ramic positioning elements employed for nanoposition-
ing by characterizing energy properties of the materials.
By employing statistical homogenization techniques to
construct effective parameters for the models, signifi-
cant flexibility is imbued in the resulting constitutive
relations including minor loop closure under biased op-
erating conditions. Furthermore, this yields models and
commensurate inverse relations which are highly effi-
cient and hence promote real-time implementation.

From a control perspective, these models are impor-
tant since they provide a means of quantifying nonlinear
material dynamics in regimes where feedback mecha-
nisms are ineffective due to measurement errors or in-
accurate state estimates. The inverse maps can be em-
ployed to construct inverse compensators for linear con-
trol design as detailed for optimal control laws in [7]
and adaptive control techniques in [14]. Current inves-
tigations are focused on the development of robust con-
trol techniques which employ the inverse compensators
outlined in this paper for high accuracy, high speed,
nanopositioning.
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